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Abstract

Understanding the sedimentation and simultaneous consolidation behavior of xanthan gum (XG)-biopolymer-treated soils remains a significant research
gap in developing environmentally friendly ground-improvement techniques for geotechnical applications. This study addresses this gap by conducting
laboratory experiments on kaolinite suspensions with varying XG-to-kaolinite mass ratios (my/ms). The results showed that the XG treatment modified
the sedimentation patterns by promoting larger floc formation and accelerated settling. Additionally, the XG treatment enhanced the shear stiffness and
shear strength, particularly at shallow depths. At my/ms ratios less than 1%, the volume compression was reduced by the XG; the coefficient of
compressibility decreased by 49% at 1% my/ms, and the consolidation was accelerated, as indicated by a 387% increase in the hydraulic conductivity at
0.5% my/m; under the vertical effective stress of 40 kPa. Contrastingly, at my/m; ratios greater than 1%, viscous XG hydrogels clogged pores, resulting in
a45% reduction in the coefficient of consolidation at 2% my/ms under a vertical effective stress of 15 kPa and a 35% decrease in the hydraulic conductivity
at 2% my/m; under a vertical effective stress of 40 kPa. These findings underscore the potential of XG treatment in improving the sedimentation and
consolidation processes, highlighting its applicability in geotechnical projects, such as dredging, landfilling, and artificial island construction.
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1. Introduction

Sedimentation and consolidation are closely linked and significantly affect the behavior of soils and structures built upon them (Mitchell and Soga,
2005; Lu et al., 2024). Sedimentation involves the repositioning of soil particles under the influence of gravity, followed by consolidation, which refers
to soil compression and a decrease in pore pressure over time. These processes are vital for numerous practical applications, such as environmental
remediation (Weng et al., 2024), agriculture (Barciela-Rial and van der Star, 2024), resource management (Néel et al., 2003; Zhang et al., 2024), and
geotechnical construction (Yin et al., 2024). Several factors, such as the weight of the overlying sediments, water content, temperature, and pore fluid
chemistry, affect sedimentation and consolidation (Hou et al., 2024; Lin et al., 2024), leading to the compaction of soil particles and an increase in their
density.

Various materials, such as polyelectrolytes, inorganic coagulants, organic coagulants, and enzymes, are used as flocculants to facilitate soil
sedimentation and enhance consolidation behavior (Matilainen et al., 2010; Keeley et al., 2014; Sillanpéa et al., 2018). However, these materials are
expensive and pose potential environmental hazards (Tang et al., 2016; Zhu et al., 2018). Consequently, organic coagulants, such as tannins, chitosan,
enzymes, and composite inorganic—organic coagulants, have gained increasing attention over the last decade (Kwon et al., 2017; Khairul Zaman et al.,
2021; Rasheed and Moghal, 2024).

This study aimed to evaluate the feasibility of using a xanthan gum (XG) biopolymer for kaolinite suspensions as an organic coagulant and
consolidation aid to address the limitations of conventional flocculants. XG is a versatile substance that has been utilized in various industries, such as
food (Chaturvedi et al., 2021), drilling (Quitian-Ardila et al., 2024), concrete production (Wagh and Gandhi, 2024), geotechnical constructions (Anandha
Kumar and Sujatha, 2022; Kwon et al., 2023d), and 3D printing (Maierdan et al., 2024). Moreover, XG can form composites with electrically charged
biopolymers (Bergmann et al., 2008; Kwon et al., 2023b) and clay (Banu et al., 2020; VVydehi and Moghal, 2022). The interaction between XG and clay
surface affects the clay properties, including consistency index, erosion resistance, compressive strength, and shear strength (Wan et al., 2024).

Previous studies have investigated the sedimentation (Yokoi et al., 1996; Tan et al., 2014) and consolidation behaviors (Cabalar et al., 2018) of XG-
treated clays. However, studies on XG-treated clays have focused solely on analyzing the separate aspects of sedimentation and consolidation, without
addressing the combined process. Delage and Lefebvre (1984) noted that the consolidation properties of the sediments differ markedly from those of
uniformly mixed soils. Locat et al. (1996) stated that larger interaggregate pore spaces formed during sedimentation could enhance consolidation by
facilitating effective drainage. This indicates a significant knowledge gap regarding the influence of XG on the serial processes of sedimentation and
consolidation, which are crucial for the formation of most soil layers.

In this study, the sedimentation and subsequent normal consolidation processes of XG-treated kaolinite were investigated through a combination of
sediment deposition in settling columns and consolidation tests using an oedometric cell apparatus. We examined the sedimentation behavior of the XG-
treated kaolinites by measuring the settling rate and final sediment density. Furthermore, the changes in vertical effective stress (') and void ratio (e)
during consolidation were analyzed by measuring the shear wave velocity (Vs) in the XG-treated kaolinite specimen. Subsequently, the undrained shear
strength (s,) of the XG-treated kaolinite was analyzed after consolidation. The results of this study have significant potential for analyzing the efficiency
of XG in geotechnical engineering applications that utilize suspension-type clays, including those used in dredging, landfills, and artificial island
construction.

2. Materials and experimental procedure
2.1 Xanthan gum and kaolinite

The XG used in this study was purchased from Sigma-Aldrich (St. Louis, MO, USA; CAS number: 11138-66-2). XG has the molecular structure
Ca3sHa9O2 and consists of a linear B-D glucose backbone with a negatively charged trisaccharide side chain (Ross-Murphy, 1995). Under static conditions,
a small amount of XG can significantly increase the liquid viscosity owing to the repulsive forces between the trisaccharide side chains (Palaniraj and
Jayaraman, 2011). The XG utilized herein was a light-yellow-to-beige powder with a Brookfield viscosity ranging from 800 cps to 1200 cps for a 1%
solution. A Shimadzu XRF-1800 X-ray fluorescence spectrometer (Shimadzu, Japan) was used to determine the chemical composition of XG, as presented
in Table 1.

The clay mineral used in this study was Bintang kaolinite (Al,Si,Os(OH),) obtained from Belitung Island, Indonesia. Bintang kaolinite, a type of
clay with high plasticity, has a liquid limit of 70%, plastic limit of 24%, specific gravity (G) of 2.65, mean particle size of 4 um, and specific surface area
of 22 m?/g.

*Corresponding author. Email: ilhanchang@ajou.ac.kr



Table 1. Chemical composition of xanthan gum.

Analyte Content
c 87.9%
K 9.13%
Na 2.06%
P 0.29%
Mg 0.22%
S 0.18%
Ca 0.1%

Si 0.06%
Al 0.05%

Kaolinite was oven-dried according to ASTM D2216 (2019). The dried kaolinite (ms = 140 g) was mixed with varying amounts of XG powder (m,
=0,0.149,0.35¢,0.7 g, 1.4 g, and 2.8 g) to produce the XG-to-kaolinite weight ratios (my/ms) of 0, 0.1%, 0.25%, 0.5%, 1%, and 2%. Instead of the
increase in viscosity, my/ms ratios < 2% were selected to observe the effects of the interaction between XG and kaolinite on the soil properties (Sujatha et
al., 2021).

2.2 Sedimentation test

The XG-treated kaolinite was then placed in a sedimentation tube of diameter 75 mm (area A = 4417.87 mm?) with a detachable oedometric cell at
the base (Fig. 1). Then, 1400 g of deionized water was added to the tube to obtain a clay slurry with a water content of 1000%. The suspension was slowly
mixed using a perforated plunger until a consistent suspension was formed, and the tube was sealed with a thermoplastic film (Parafilm M; Bemis
Company, Inc., Bellwood, IL, USA). After hydration for 24 h, the suspension was agitated for 2 min over 60 end-over-end cycles. The tube was placed
on a level surface, and the heights of the sediment (h) and suspension were continuously monitored until the sediment reached a constant level, as
described in the protocol for the sedimentation test by Palomino and Santamarina (2005).

The experiments were conducted in a controlled environment at room temperature (21+1 °C), to minimize the effects of temperature. The value of
e during settling was calculated as follows:

ezvivzvsed _Vs:h'A_(ms/Gs) (1)
VS VS mS/GS

where v, is the volume of the void spaces, vs is the volume of the soil, and vgyq is the volume of the sediment. Here, the volume of XG is included in v,
rather than in v, to focus solely on the kaolinite fabrics. Thus, the e of initial sediment was calculated to be 25.7, regardless of my/m;.

2.3 Consolidation test

After the sediment became stabilized, the oedometric cells were gently extracted from the sedimentation tube. The sample within the oedometric
cell served as the initial condition for normal consolidation. The sediment specimens with a surface area A = 4417.87 mm? were trimmed to a uniform
height of 7 cm from the bottom (Fig. 1).

In this study, unimorph-type piezoelectric bender elements (T223-H4CL; Piezo Systems Inc., Woburn, MA, USA) were used to generate and detect
shear waves. Each bender element was 12 mm long, 8 mm wide, and 0.6 mm thick. The anode and cathode wires of a coaxial cable were soldered to each
side of the element, to form a series configuration. The surfaces of the bender elements were coated with polyurethane for waterproofing and covered
with a conductive paste layer to prevent unwanted electromagnetism between the source and receiver elements. The bender elements were firmly mounted
on the base of the oedometric cell and underneath the load cap using epoxy resin (Fig. 1).

Prior to loading, the specimens were positioned in an oedometric testing device, and a load cap equipped with a bender element was placed on top
of each specimen. The porous plates located at the top and bottom of the specimens allowed pore water to drain in two directions during the loading
process. Sequential step loads of 10 kPa, 20 kPa, 30 kPa, and 40 kPa were applied to the specimens to simulate the conditions at the Kwang-Yang Harbor
reclamation site (Chang and Cho, 2010) for shallow-depth applications, followed by a final application of a reduced load of 10 kPa. The temperature was
maintained at 21 + 1 °C during the consolidation. Vs was measured for all the specimens in the vertical direction, which was also the loading direction.
Shear waves were generated using a signal generator (Agilent 33120A; Keysight, Santa Rosa, CA, USA) with a single input signal of amplitude 5 V and
frequency of 5 kHz. The signals received at various depths were stored in a digital oscilloscope (DSOX3024T; Keysight, Santa Rosa, CA, USA), as
shown in Fig. 2, and the first arrival of the shear wave was marked as zero after the first bump (Lee and Santamarina, 2005). Fig. 2 shows the decreasing
arrival time with increased confinement and inelastic recovery during unloading.
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Fig. 1. Experimental setup: Sedimentation tube with a removable oedometric cell (adopted from Chang and Cho (2010)).
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Fig. 2. Example of interpretation of travel time from shear waves.

Once the convergence of V; and volumetric expansion was achieved, the load cap was detached from the oedometric cell. Laboratory vane shear
tests were performed according to ASTM D4648-05 (2007). These tests involved using a vane blade with a length and width of 12.7 mm to ascertain the
s, value of each sample.

2.4 Visual observations: X-ray CT scanning and scanning electron microscopy

An X-ray computed tomography (CT) scanner (X-eye PCT; SEC, Korea) was used to obtain quantitative and spatially resolved information on the
X-ray attenuation properties of the scanned regions, providing insight into the flocs and texture of the kaolinite suspension. Therefore, additional
sedimentation tests were conducted in tubes of diameter 2.54 cm. Once the sediment height was stabilized, sedimentation tubes containing untreated
kaolinite and kaolinite treated with XG at my/ms = 0.5% were placed in the CT machine without further processing. Scanning was performed with a source
voltage of 150 kV and a current of 1 A. Each scan produced slice images of 1024 x 1024 pixels, for a total of 1024 thin slices encompassing the entire
sediment.

Environmental scanning electron microscopy (ESEM) was utilized with a Model Quattro ESEM (Thermo Fisher Scientific Inc., Waltham, USA),
which controlled the water vapor pressure (10-4000 Pa) and relative humidity within the specimen chamber, to examine the microscale interactions
between XG and kaolinite after consolidation. Samples of both untreated and XG-treated kaolinite (my/ms = 0 and 1%, respectively) were mounted on an
ESEM stub, and the specimen surfaces were exposed to electron beams, with the relative humidity fluctuating between 0 and 100% during the observations.

3. Results and analysis
3.1 Sedimentation and normal consolidation
3.1.1 Sedimentation test

The sedimentation behavior of kaolinite was influenced by the interaction between XG and kaolinite, which varied depending on my/m; (Fig. 3 and
Table 2). The untreated kaolinite settled uniformly, forming a distinct interface with the supernatant (bottom left of Fig. 3), which can be classified as the
flocculation sedimentation mode, according to Palomino and Santamarina (2005).

With the XG treatment (bottom middle and right of Fig. 3), the sedimentation mode changed from flocculated sedimentation (my/ms = 0, 0.1%) to
mixed-mode sedimentation (my/ms = 0.25%, 0.5%) and dispersed sedimentation (my/ms = 1%, 2%). This behavior could be attributed to the XG-induced
formation of aggregates (Nugent et al., 2009; Shen et al., 2020; Zhao et al., 2022). When my/ms < 1%, XG formed larger flocs with a larger e, which
settled faster than untreated kaolinite because of the increased size and weight (Van der Lee, 2000). However, at my/ms > 1%, the supernatant became
opaque owing to viscous XG hydrogels (Sun et al., 2007; Chakraborty et al., 2023), making it difficult to distinguish the boundary between the supernatant
and the sediment. Meanwhile, the XG packs aggregated more densely or formed their own hydrogels, resulting in a more dispersed settling of soil particles
(Kang et al., 2019), leading to a decreased settling rate and a smaller final e.
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Table 2. Conditions and results of the sedimentation test

Specimen Ref (Untreated) XG-treated

XG 0 0.1% 0.25% 0.5% 1% 2%

Dry soil (g) 140 140 140 140 140 140
Sedimentation Flocculation Flocculation Mixed-mode Mixed-mode Dispersed Dispersed
mode* sedimentation sedimentation sedimentation sedimentation sedimentation sedimentation
Initial void ratio 26 26 26 26 26 26

Final void ratio ~ 7.23 7.47 7.31 7.63 6.41 6.50

Initial  settling  0.40 2.58 2.29 2.28

rate (cm/min) **
* Sedimentation mode as defined by Palomino and Santamarina (2005).
** |nitial settling rate cannot be measured for the dispersed sedimentation mode.

3.1.2 Consolidation test

Fig. 4 and Table 3 summarize the normal consolidation behaviors of the XG-treated kaolinites. In contrast to the untreated sediment, which had a consistent
density throughout the sample, the XG-treated samples demonstrated a denser buildup of aggregates from the bottom (Bottom of Fig. 3), resulting in a
density gradient that increased from the bottom and decreased toward the top. Consequently, the large interaggregate pore spaces at the bottom led to a
smaller initial e for consolidation.

When vertical loading was applied, the XG-treated kaolinite exhibited a larger e at the end of consolidation than the untreated kaolinite. The
coefficient of compressibility, measured as the ratio of the change in void ratio to the change in vertical effective stress (before loading and at 40 kPa),
decreased by 49%, from 0.112 kPa (untreated) to 0.057 kPa™ for 1% my/ms. This was attributed to the XG—kaolinite bonds, which resisted compression.
This finding contradicts the results of Kwon et al. (2023a), who reported a smaller e at the end of consolidation and a higher compressibility for remolded
XG-treated kaolinites than untreated kaolinite, particularly for my/ms>1%. This difference in findings could be attributed to the variations in the specimen
preparation methods. In a previous study, samples were prepared by mixing kaolinite and XG directly in the laboratory, whereas in this study, samples
that underwent sedimentation processes were utilized.

The XG-treated kaolinite exhibited a higher V; at the end of consolidation when subjected to the vertical loadings of 10 kPa and 20 kPa, even though
e, which is inversely correlated with V, (Choo and Burns, 2015), was larger for the XG-treated kaolinite than for the untreated samples. The increase in
shear stiffness (i.e., Vs) is mainly attributed to the interaction between XG and kaolinite. In contrast, in the 30—40 kPa range, the untreated samples showed
a higher V; than the XG-treated samples. This is likely due to the dominant effect of the confining pressure, rather than bridge formation by XG, in this
range.

3.1.3 Unloading and vane shear test

Table 3 summarizes the e, Vs, and s, values for each specimen after unloading. The lowest volume expansion percentage (1.53%) was observed at
0.1% my/ms, whereas the highest volume expansion percentage (3.21%) was observed at 2% my/m;, suggesting a nonlinear relationship between my/ms
and volume expansion. The XG resisted volume expansion at a low my/ms; however, it expanded more than untreated kaolinite with unloading when
my/m; exceeded a certain value (i.e., 2% in this study). Vs was lower in XG-treated kaolinites because of their larger e than that of untreated kaolinite,
whereas untreated kaolinites showed a larger decrease in V; after unloading (19%) than that of the 0.25%-1% XG-treated specimens (15%-17%). Despite
having a lower stiffness and density than the untreated kaolinites, the addition of XG resulted in a higher s, (Table 3 and Fig. 5). These effects arise from
the properties of XG. XG bonds soil particles, enhancing cohesion and increasing shear strength; however, its high flexibility reduces stiffness. Thus, the
shear strength and stiffness do not correlate directly; they vary based on the balance between XG bonding and hydrogel flexibility.
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Table 3. Conditions and results of the consolidation test.

0

Specimen Ref (Untreated) XG-treated
XG contentof 0 | XG content of | XG content of | 0.5% 1.0% 2.0%
0.1% 0.25%
Consolidation test | e before loading* 6.37 4.89 4.91 5.43 4.29 5.45
e after loading of 10 kPa 2.39 2.59 2.78 2.72 2.56 2.92
e after loading of 20 kPa 211 2.22 2.36 2.23 2.29 2.52
e after loading of 30 kPa 1.97 2.06 2.16 2.06 2.12 2.32
e after loading of 40 kPa 1.89 1.96 2.03 1.97 2.02 2.18
Vs (m/s)=10 kPa 38.83 44.79 42.05 46.36 46.51 38.63
Vs (m/s)=20 kPa 60.20 63.30 60.74 64.25 61.98 56.41
V; (m/s)=30 kPa 79.54 75.41 74.31 76.84 74.89 68.95
Vs (m/s)=40 kPa 97.70 85.49 84.98 85.20 87.08 80.77
Unloading/Labora | e 1.94 1.99 2.07 2.01 2.06 2.25
tory vane shear | Vi (m/s) 79.47 68.29 72.25 70.99 71.95 57.49
test Undrained shear strength (kPa) 4.00 12.01 11.45 11.76 10.32 7.88
*The initial void ratio before loading was due to the initial confinement applied by the load cap.
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Fig. 5. Effect of xanthan gum treatment on undrained shear strength and void ratio.

3.2 XG effect on consolidation parameters

3.2.1 Vertical effective stress

Xanthan gum (%)

In Fig. 6, Vs and ¢’ at the end of consolidation were plotted for each applied vertical load. The relationship between V, and o’ is expressed as

A :a(ov')ﬂ

@

where a (m/s) represents V; at a 6’ of 1 kPa, whereas S represents the sensitivity of the skeletal shear stiffness to changes in the applied stress. A higher
value of « indicates a higher shear stiffness at a shallow depth, whereas a higher g indicates a larger variation in shear stiffness owing to changes in the
applied load (Cha et al., 2014).

Compared with the untreated sample, the introduction of XG resulted in an increase in « and a reduction in 4. This indicates that, under low vertical
loads (i.e., shallow depths), the shear stiffness was enhanced by the XG treatment. However, under higher vertical loads (i.e., deeper depths), the effect
of XG on the shear stiffness of the clay fabrics decreased. Consequently, the untreated kaolinite with a smaller e exhibited a higher V; at 30 kPa and 40
kPa than the XG-treated kaolinites. This suggests that the stiffness reinforcement effect provided by the XG is more pronounced at shallow depths (up to
20 kPa). This behavior occurs because, with increasing depth, soil fabric densification becomes the dominant factor influencing stiffness, thereby
overshadowing the reinforcement effect due to XG. Note that 0.25% XG exhibited a higher 4 and lower « than 0.1% XG, which could be attributed to
the more effective formation of interparticle bridges at 0.25% XG, which helps maintain stiffness with an increase in the load; however, at 0.1%, XG
could primarily be adsorbed onto the particle surfaces without significantly reinforcing the structure.

The remarkable variation in « and £ at 0.5% m,/m, can be attributed to the balance between the ability of XG to form bridges among kaolinite
particles and its influence on the pore spaces within the soil matrix (Theng, 2012). During sedimentation, XG at m,/m; less than 1.0% primarily acts as a
bridging agent between kaolinite fabrics (Kwon et al., 2023c), enhancing the shear stiffness of the kaolinite sediment at shallow depths (i.e., increased
o) . However, as ¢, increases, these bridges are eventually overcome, leading to the reduced sensitivity of Vs to changes in ¢,". In contrast, XG treatment



at my/ms greater than 1.0% tended to create a viscous hydrogel within the pore spaces, resulting in an increase in e after consolidation (Table 3). This
phenomenon led to a decrease in « and an increase in # compared with 0.5% my/m;.

3.2.2 Void ratio (e)

The values of e and their corresponding Vs values measured during the consolidation of the XG-treated kaolinites are shown in Fig. 7a. The results
showed that, at a similar e, the XG-treated kaolinite resulted in a stiffer sediment formation (i.e., higher V). The relationship between e and V; can be
expressed as follows:
e=e, —b INV, ®
where eqns represents the value of e at Vs = 1 m/s, and coefficient b; indicates the sensitivity of e to changes in the value of V..

A trend of increasing eins values with XG was observed. However, a decreasing trend was observed at my/ms = 1%, followed by a subsequent
increase at my/m = 2%. This trend suggests that the XG results in an increase in e (i.e., a smaller compression) at low shear-wave velocities (i.e., Vs = 1
m/s; soft soil). The coefficient b; increased with my/ms up to 0.5% owing to the presence of XG bridges. However, the b; value decreased at 1% XG,
potentially because of the formation of a viscous hydrogel within the pore spaces.
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e was plotted against its corresponding ¢,' (Fig. 7b) by substituting Eqg. (1) for Vs in Eq. (2) as
e=ey, —b,In(0)). @)
where ey, represents the e at o, = 1 kPa, and the coefficient b, represents the sensitivity of e to changes in o'

The result demonstrated a larger e at a similar ¢,' with XG treatment, indicating the resistance of XG to the compression of kaolinite by vertical
loading. e, displayed a general increase with increasing my/ms up to 0.5%, followed by a decrease at 1% and an increase again at 2%. This trend indicates
that a higher my/m; affects e at a low a,'. The coefficient b, exhibited a decreasing pattern with increasing my/ms up to 0.1%, followed by an increase at
0.25% and 2%, and a decrease again at 0.5% and 1%. This suggests that the sensitivity of e to changes in o' is influenced by my/m,, with varying effects
at different my/m; values.

3.2.3 Coefficient of consolidation

The coefficient of consolidation (C,) characterizes the ability of the soil to dissipate excess pore water pressure and reach a new equilibrium state
(Terzaghi et al., 1996). Even under the same vertical loading, C, can exhibit a nonlinear behavior during consolidation owing to changes in soil fabrics,
e, and a,". The C,, in cm?%s, at a specific time t, in s, can be evaluated using the variation in specimen height (H(t); in cm) and the degree of consolidation
(U =a/'(t)/a,) as follows:

2
e )
where the length of the maximum drainage path Hg, is half of H(t), and the time factor Ty is determined based on (Terzaghi, 1943; Taylor, 1948) as



T, :%UZ (for U <0.6) (6)

T, =1.781-0.933log,, (100(1-U)) (for U >0.6) @)

The estimated variation of C, by the change in ¢,' is shown in Fig. 8a. In the early stages of each vertical loading step, the specimens were highly
compressible and demonstrated a high hydraulic conductivity (k), resulting in a high C,, and rearrangement of soil particles. Consequently, the e value of
the soil decreased, leading to an increase in C,. However, as the consolidation continued, the soil became less compressible, and k decreased owing to the
reduction in pore space, causing a decrease in C, as the consolidation decelerated.

The addition of XG with my/ms less than 1% was observed to increase C, at a similar o,', which contradicts the findings of a previous study that
reported a decrease in C, with the addition of XG (Kwon et al., 2023a). This difference could be attributed to the specimen preparation method used in
this study (i.e., uniform mixing and sedimentation). During the sedimentation process, kaolinite particles were bridged by XG, resulting in a larger floc
diameter. As interaggregate pores are larger than interparticle pores (Zdravkov et al., 2007), consolidation proceeded more rapidly in the XG-treated
kaolinite than in the untreated kaolinite. However, when my/m; exceeded 1%, C, decreased because the pore spaces were filled with viscous XG hydrogels.
For instance, at a ¢,' of 15 kPa, compared with the untreated sample (7.08 x 10° cm?%s), C, increased by a maximum of 1933% at 0.25% m,/m; (143.94
x 10 cm?/s), whereas a 45% decrease was observed at 2% my/m; (3.88 x 10 cm?/s).
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Fig. 8. Variation of (a) coefficient of consolidation and (b) hydraulic conductivity with vertical effective stress.

3.2.4 Hydraulic conductivity

The k, in cm/s, can be expressed as a function of C,, the coefficient of volume change m, (cm?g), and the unit weight of pore fluid y,, (g/cm?®) as
follows:

k=C,my, ®)

The value of k decreased as o' increased for all the soil specimens (Fig. 8b), which is expected, as sediment consolidation (i.e., decrease in e) causes
a decrease in k. When XG was added at my/ms <1%, k increased. Specifically, the kaolinite specimens treated with 0.25% XG exhibited the highest k
values among the tested soils. In contrast, when my/ms > 1%, the XG hydrogel exhibited pore clogging, resulting in a decrease in k. At a ;' of 40 kPa,
compared with the untreated sample (5.65 x 10° cm/s), 0.5% XG resulted in a 387% increase in k (27.53 x 10%° cm/s), whereas 2% XG led to a 35%
decrease in k (3.68 x 10° cm/s). These findings suggest that a low m,/m; is recommended for ground reinforcement through rapid consolidation, whereas

a higher my/ms is recommended for constructing hydraulic barriers. The reduction in k reached values below the minimum requirement for compacted
soil barriers, which is 107 cm/s or lower.

3.2.5 Visual observation of XG-kaolinite interaction

Fig. 9 shows the interactions between kaolinite and XG. In untreated kaolinite suspensions, the kaolinite particles were uniformly distributed (Fig.
9a), and their random distribution resulted in the sedimentation of individual particles (Fig. 9b and c). However, the introduction of XG resulted in the
formation of aggregates of various sizes (Fig. 9d). XG formed a coating around the soil particles (Fig. 9e), creating XG bridges that helped aggregate the
particles, which could be observed even after drying (Fig. 9f).

This aggregation occurred because of the ability of XG to act as a bridging agent between the kaolinite particles. XG molecules consist of functional
groups, such as hydroxyl (-OH) and carboxylic acid (-COOH) groups, which are capable of forming cation bridges and hydrogen bonds with the surface
of kaolinite particles (Barani and Barfar, 2021). Consequently, XG facilitates the formation of interparticle bridges by connecting individual kaolinite
particles, leading to the development of larger aggregates. These aggregates differ in density, which leads to a varied sedimentation pattern in which
larger aggregates settle first, followed by smaller aggregates. Thus, the XG—kaolinite interaction is governed by the formation of interparticle forces,
which induce the bridging and aggregation of kaolinite particles, altering their sedimentation behavior and leading to the structured settling pattern
observed in the XG-treated suspensions.

4. Conclusions

In this study, the sedimentation and simultaneous normal consolidation behavior of XG-treated kaolinite was investigated, emphasizing the
interaction between XG and kaolinite and its influence on soil engineering properties, such as settling rate, final sediment density, undrained shear strength,
coefficients of consolidation, and hydraulic conductivity.

The experimental results demonstrated that the XG treatment significantly influenced the sedimentation and simultaneous normal consolidation
processes, and the extent of influence varied based on the XG-to-kaolinite mass ratio (my/m;s). Specifically, at lower XG contents (my/ms <1%), XG acted
as a bridging agent, forming loose and larger flocs, accelerating sedimentation, enhancing shear stiffness, resisting compression, and promoting rapid
consolidation. For instance, at 0.5% my/ms, the hydraulic conductivity increased by 387% (under vertical effective stress of 40 kPa), whereas the
coefficient of compressibility decreased by 49% compared with those of the untreated samples. These results highlight the effectiveness of XG in
promoting both rapid consolidation and reduced compression at lower dosages.

In contrast, higher XG contents (my/ms>1%) led to the formation of viscous hydrogels, which clogged pores, resulting in reductions in the coefficient
of consolidation by 45% at 2% m,/m, under a vertical effective stress of 15 kPa, and a 35% decrease in the hydraulic conductivity at 2% my/ms under a



vertical effective stress of 40 kPa. This demonstrates that, while higher XG concentrations may reduce permeability, they also limit consolidation
effectiveness.

This study highlights the potential of XG as a sustainable alternative to synthetic chemical additives in geotechnical engineering, particularly for soil
stabilization, land reclamation, and hydraulic barrier construction. The ability of XG to enhance consolidation and improve shear strength while
controlling hydraulic conductivity provides practical advantages for ground reinforcement and soft soil treatment.

To expand the applicability of this study’s findings, several considerations need to be addressed. The experiments were conducted under controlled
laboratory conditions without considering changes in salinity, groundwater chemistry, or temperature fluctuations. Additionally, the long-term stability
of XG-treated sediments remains unclear and warrants further investigation. Furthermore, the focus on kaolinite limits the generalizability of the results
to other soil types with varying mineralogical and physical characteristics.

(e) RH=100%  XG hydrogel coating
around the soail particle

Fig. 9. Visual analysis of kaolinite suspensions: (a) X-ray CT scan of uniform kaolinite suspension (in grey) without XG treatment, ESEM images of
untreated kaolinite at the relative humidities of (b) 100% and (c) 60%, (d) X-ray CT scan of XG—kaolinite aggregates (in grey) in deionized water (in
black), and ESEM images of XG-treated kaolinite at the relative humidities of (e) 100% and (f) 60%.

Future research should investigate the comparative effects of alternative biopolymers, such as chitosan or guar gum, on sedimentation and
consolidation processes. Expanding the scope to include diverse soil types would offer a more comprehensive understanding of biopolymer-soil
interactions. Field-scale studies under realistic conditions and long-term assessments of durability, biodegradation, and environmental impacts of
biopolymer-treated soils are essential.
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List of notations

XG xanthan gum biopolymer

ms weight of kaolinite (g)

my/Ms weight ratio of xanthan gum to kaolinite (%)
A area of sedimentation tube (m?)

h sediment height (mm)

e void ratio

Vs shear wave velocity (m/s)

Sy undrained shear strength (kPa)

o vertical effective stress (kPa)

C, coefficient of consolidation (cm?/s)
k hydraulic conductivity (cm/s)
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